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Abstract: The blood–brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells,
and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-
borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin,
and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators
commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory
responses, which are important features observed in the brain of Alzheimer’s disease (AD) patients.
Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating
microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mecha-
nisms work in concert and reinforce each other, contributing to the typical pathological changes in
AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in
microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD
prevention. In this article, we review the current knowledge regarding the mechanisms of microglial
activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain
via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a
potential therapeutic approach for AD, along with the limitations and potential challenges of these
approaches, are also summarized.

Keywords: Alzheimer’s disease; microglia; neuroinflammation; neurodegeneration; blood–brain
barrier; blood-borne protein

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder often character-
ized by memory loss and impaired cognition [1–4]. The global AD prevalence is increasing
concurrently with the aging population [4–7]. However, the pathogenic mechanisms of
AD remain elusive, despite extensive research on the various causative and contributory
factors, including genetics [1–3,8–12]. An accumulating body of evidence suggests that
neuroinflammation mediated by glial activation is an important neurotoxic mechanism
associated with the initiation and progression of AD, including the subsequent neuronal
cell death and cognitive impairment [13–24].

Microglia promote brain homeostasis through synaptic remodeling maintenance and
dead cell removal under non-pathological conditions. However, during the early stages of
AD, an increase in inflammatory responses via microglial activation in the brain has been
reported [23,25,26]. These responses are also involved in the early formation of amyloid
beta (Aβ) plaques and persistent microglial activation, which can result in the generation of
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pro-inflammatory cytokines and reactive oxygen species (ROS) [23,25,26]. These pathways
interact and reinforce one another to induce pathological alterations in the AD brain, which
primarily involve microglial activation, neuroinflammation, tau hyperphosphorylation,
compromised mitochondrial activity, and oxidative stress [23,25,26]. This, in turn, triggers
neurodegeneration due to the subsequent loss of synapses and neurons, resulting in neu-
ronal death [14,15,17,18,20]. In particular, the initial microglial activation and the resulting
neuroinflammation may act as a starting point for the observed neurodegeneration in the
AD brain [23,25,26]. These findings suggest that initial microglial activation can exacerbate
AD progression, despite potential variations in the roles of microglia activation and inflam-
matory responses within the brain. [13,17,18,27–30]. Therefore, there is a pressing need to
investigate such endogenous substances that may induce microglial activation to build an
effective AD treatment strategy.

The blood–brain barrier (BBB) is essential for the maintenance of the brain tissue
microenvironment. It improves connectivity while also providing insulation of the brain
parenchyma from the peripheral circulation system [31]. It is composed of specialized
endothelial cells and various tight junction (TJ) proteins to ensure optimal functioning
of the BBB [31]. These TJs, together with specialized transporters, allow the passage of
nutrients into the central nervous system (CNS) while restricting blood-borne molecule
influx [32]. Meanwhile, in pathological conditions, BBB disruption can result in the entry
of blood-borne proteins such as prothrombin, thrombin, prothrombin kringle-2 (pKr-2), fib-
rinogen, and fibrin, among others, into the brain parenchyma [33,34]. This causes gradual
neurodegeneration and neuronal death through direct and/or indirect neurotoxicity, oxida-
tive stress, mitochondrial function loss, and pro-inflammatory mediator release, leading
to memory loss and a decline in cognitive function. Several reports suggest that the early
stages of AD are critical, as BBB breakdown occurs during this period [35–39], which allows
the entry of blood-borne proteins in the brain parenchyma, thus contributing to neurotoxic-
ity by several mechanisms [40,41]. For instance, blood-borne proteins such as prothrombin,
thrombin, pKr-2, fibrinogen, and fibrin can activate microglia and induce neuroinflam-
mation, resulting in neurodegeneration and cognitive decline in various animal models
of AD [34,42–51]. Moreover, some of these blood proteins (such as thrombin, fibrinogen,
and fibrin) can cluster with Aβ, the main causal agent of AD, and can further exacerbate
microglial activation [52–56]. Furthermore, fibrinogen deposition can lead to impaired
memory and result in exacerbated levels of interleukin-6, ROS, mitochondrial superoxide,
and nitrite in mouse brain neurons [57]. This can result in abnormal tau phosphorylation,
which is another major hallmark of AD [58], and further amplify neurotoxicity through
the interplay with Aβ plaques, thus affecting neurotransmitter balance [59]. As fibrinogen
is not expressed in the brain, BBB disruption is required for plasma fibrinogen to cross
the BBB and reach the brain parenchyma [34]. Therefore, investigating the mechanisms of
blood-borne protein entry into the brain and microglial activation promotion leading to the
release of pro-inflammatory cytokines resulting in neuronal loss may help develop novel
therapeutic strategies for AD.

In this review, we first provide a brief overview of microglial activation and its tran-
sition into various phenotypes. The interplay between M1 (pro-inflammatory) and M2
(anti-inflammatory) phenotypes were also described by emphasizing their role in AD.
Additionally, the pathophysiology and consequences of BBB disruption that further lead to
neuronal loss and cognitive impairment observed during AD initiation and progression
have been elucidated. Furthermore, we also describe the mechanisms and phenomena of
microglial activation and neuroinflammation caused by the infiltration of various blood-
borne proteins through the BBB. Subsequently, a summary of the mechanisms of drugs that
inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the
limitations and potential challenges of these approaches, is also discussed.
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2. Microglial Activation in AD

As resident innate immune cells in the CNS, microglia are the primary regulators
of brain inflammation [14,15,19,20,60]. There are numerous forms of activated microglia,
some of which may be beneficial, while others may be harmful [14–16,20,29,61,62]. A
growing body of evidence suggests that microglial activation in the CNS can be classi-
fied into two contrasting phenotypes: the pro-inflammatory M1 phenotype and the anti-
inflammatory M2 phenotype (Figure 1) [63,64]. The classical activation state of microglia,
known as M1 microglia, is characterized by the induction of inducible nitric oxide synthase
(iNOS) and nuclear factor-κB (NF-κB) pathways, resulting in the production of various pro-
inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta
(IL-1β), and IL-6, as well as superoxide, ROS, and nitric oxide (NO) [63,64]. On the other
hand, M2 microglia encompass a spectrum of activation states induced by interleukin-4
(IL-4)/interleukin-13 (IL-13) and interleukin-10 (IL-10)/transforming growth factor-beta
(TGF-β) signaling, which are collectively referred to as alternative activation and acquired
deactivation, respectively [63,64]. The question of how microglia alter phenotypes when
the underlying clinical insult is in the peripheral organs and systemic circulation is critical.
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Figure 1. Schematic illustration of the polarization and phenotypic transition of microglia. Microglia
remain stationary in a normal state. Various stimuli can induce the resting microglia to acquire
different phenotypes. In general, M1 microglia is a pro-inflammatory phenotype, while M2 microglia
is an anti-inflammatory phenotype. M1 or M2 microglia can release different substances, and these
two phenotypes are interchangeable under certain conditions. Figure was created using BioRender
(https://www.biorender.com/ (accessed on 5 April 2023); Agreement number: RT257J0VDX).

In the brain tissue of individuals with AD, microglia play a crucial role [14,15,17–19,27,
29,62,65]. They participate in the brain’s inflammatory response and assist in the removal
of brain debris and foreign substances [19,28,60,66]. For example, microglia in the brain
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of patients with AD remove Aβ and tau protein accumulation and promote the repair
of damaged areas [19,28,60,66]. However, excessive activation of microglia in the brain
of AD patients can also lead to neuroinflammation, which can accompany neurodegen-
eration [24,30,66]. Moreover, the excessive activation of microglia in the brain can cause
neuronal damage, leading to memory loss and cognitive impairment [60,67,68]. In the
early stages of AD plaque development, M2 microglia participate in Aβ phagocytosis
by producing proteolytic enzymes that decrease Aβ production, thereby promoting tis-
sue homeostasis [19,28,66,69]. However, with the excessive Aβ plaque accumulation in
AD, M1 microglia continue to be activated, resulting in persistent inflammation and a
vicious cycle of even greater Aβ production and neurodegeneration [13,17,18,27–30]. More-
over, microglia also prevent the spread of tau by internalizing and/or destroying the tau
seeds [70]. However, the failure of microglia to degrade tau results in the release of ex-
osomes containing tau that can spread to neurons, resulting in impaired mitochondrial
activity, synaptic dysfunction, neurodegeneration, and cognitive decline [70]. Microglia
have an extremely low mitochondrial turnover and critically suffer from mitochondrial
dysfunction [71]. Furthermore, both in vitro and in vivo experiments suggest the role of
microglia in the preservation of the BBB phenotype through the enhancement of TJ protein
expression [72]. Conversely, emerging evidence advocates that microglial activation is asso-
ciated with increased BBB permeability and a decrease in the clearance of toxic substances
from the brain, which has been implicated in promoting inflammatory responses within
the BBB [73,74]. Although the initiation of an innate immune response by microglia is
aimed at protecting the brain, its overactivation may result in disease progression [24,30,75].
Therefore, understanding the mechanisms that activate microglia is crucial.

Neuroinflammation is a pathological hallmark of AD [22–25,75–77], and, while it
rarely occurs in a normal brain, it occurs in pathologically vulnerable areas. Activated
microglia and astrocytes produce inflammatory factors such as cytokines, chemokines
[Monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8)], NO, and various
complement factors such as complement component 1q (C1q), complement component
3 (C3), complement component 4 (C4) [14,29,77–81]. Neuroinflammation secondary to
early microglial activation in AD can impair other brain cell functions, cause neuronal
damage and BBB leakage, and accelerate AD progression [13,17,18,27–30]. Unlike other
risk factors for AD, neuroinflammation is usually not only a causative factor itself but
rather a result of one or more AD pathologies (e.g., Aβ, hyperphosphorylated tau) or
endogenous factors associated with AD [69,79,82]. It also appears to have a dual function
that plays a neuroprotective role during the acute phase reaction but can be harmful
under chronic conditions; persistently activated microglia can cause neuronal damage by
releasing a variety of pro-inflammatory and toxic products [25,30,75,77,78]. According
to several reports, inflammatory responses by microglial activation in the brain increase
in the early stages of AD [23,25,26]. Persistent activation of microglia can lead to the
production of pro-inflammatory cytokines and ROS, which may be the starting point
for the neurodegeneration observed in the AD brain. [23,25,26]. Therefore, investigating
endogenous substances that activate microglia is essential for identifying the causes of this
microglial activation in the early stages of AD.

3. Pathophysiology of BBB Disruption

The BBB plays a crucial role in maintaining CNS homeostasis [83–86]. It is composed of
endothelial cells, astrocyte end feet, and pericytes, which form a highly specialized structure
that restricts the passage of blood-borne substances into the CNS (Figure 2) [31,83,87,88].
The TJs between endothelial cells form the primary barrier, preventing the movement of
hydrophilic molecules and macromolecules between the blood and the brain parenchyma,
thus playing a critical role in regulating the paracellular transport of molecules and ions
between endothelial cells (Figure 2A) [31,87–91]. The astrocyte endfeet are intimately
associated with the endothelial cells and secrete factors that regulate the BBB structure
and function [31,87,88]. Pericytes, located on the abluminal side of the endothelial cells,
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play a crucial role in BBB maintenance and regulation [31,87,88]. Collectively, these cellular
components work in consort to maintain the integrity of the BBB and regulate the selective
transport of nutrients, ions, and signaling molecules to the CNS, while preventing the entry
of potentially harmful substances (Figure 2B) [92–94].
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Figure 2. The blood–brain barrier (BBB) in the healthy brain. (A) The BBB consists of a complex
cellular system of a highly specialized basal membrane, a large number of pericytes, astrocytic end
feet, tight junction proteins (occludin and claudin), neurons, and microglia. The cells forming the
BBB communicate with cells of the brain and in the periphery. The pericytes and endothelium share
a common basement membrane and connect with a variety of transmembrane junction proteins,
which aid in BBB integrity maintenance. Pericytes, endothelial cells, and neurons are connected by
astrocytes. The immunological responses are regulated by microglia. (B) The BBB regulates the blood-
to-brain and brain-to-blood permeation of several substances, resulting in the nourishment of the
CNS, its homeostatic regulation, and communication between the CNS and peripheral tissues. Figure
was created using BioRender (https://www.biorender.com/ (accessed on 6 May 2023); Agreement
number: WK25BZA2TM).

TJs are composed of transmembrane proteins, such as occludin and claudins, as
well as intracellular scaffolding proteins, such as the zonula occludin family proteins
(Figure 2A) [89–91]. The interplay of these proteins forms a tight seal between adjacent
endothelial cells, preventing the diffusion of large molecules and maintaining the selective
permeability of the BBB [89–92]. Dysregulation or breakdown of TJs can lead to increased
permeability of the BBB, allowing for the influx of harmful substances such as neurotoxic
blood-borne products (such as prothrombin, thrombin, fibrinogen, fibrin, pKr-2, albumin),
toxic aggregated proteins (such as Aβ and tau), autoantibodies, iron, sodium, cells, and
pathogens into the brain, thereby initiating inflammatory and immune responses and
contributing to the development of several neurodegenerative diseases [40,41,95].

Several clinical and animal studies suggest that disruption of BBB function plays a
critical role in the initiation and progression of AD [37,96–106]. An increased influx of

https://www.biorender.com/
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blood-borne proteins and neurotoxic substances into the brain induces neuroinflammatory
responses that can potentially exacerbate AD pathology [35–37,97,99–101,107]. Addition-
ally, it has been suggested that the passage of complement proteins across the BBB alters
the function of neurons, oligodendrocytes, and microglia; permits the infiltration of in-
flammatory cells into the brain; and triggers cytokine cascades that further aid in AD
progression [35–37]. This suggests the possibility that the neuroinflammation observed in
the early stages of AD may be via microglial activation [23,25,26], which may be related to
the BBB breakdown and subsequent entry of blood-borne proteins into the brain [35,36,97].
Hence, it is important to investigate the mechanisms of microglia activation by endogenous
molecules that enter through BBB leakage during the development of AD.

4. Blood-Borne Protein by BBB Leakage Induces Microglial Activation in AD

The BBB prevents the entry of harmful substances into the brain from the blood [72,88,108,109].
Age-related degeneration of the BBB increases its permeability along with a decrease in
cerebral blood flow [95,109–112]. A decrease in the interaction between neurons and
endothelial cells and astrocytes is another factor that contributes to the BBB breakdown and
impairment. This results in the blood-borne substance leakage into the brain, including
prothrombin, thrombin, pKr-2, fibrinogen, fibrin, and albumin (Figure 3) [34,46,51,86].

4.1. Prothrombin and Thrombin

Prothrombin is a protein involved in the blood coagulation pathway, which helps to
form blood clots in response to injury [113–117]. Prothrombin in blood plasma is converted
into thrombin by factor X or prothrombinase, which then transforms fibrinogen into
fibrin to form a clot with platelets, preventing blood loss [113–117]. Increased expression
of prothrombin has been found in both neurons and glial cells in the brain tissue of
patients with AD patients compared with healthy controls [48,50,118–120]. Furthermore,
prothrombin has been shown to accumulate in neurofibrillary tangles, a pathological
hallmark of AD [48]. Although the precise mechanisms underlying the upregulation
of prothrombin and thrombin in AD are not completely understood, a growing body
of evidence suggests their potential role in the pathogenesis of this neurodegenerative
disease [48–51,118,119]. These findings suggest that prothrombin may contribute to the
neurodegenerative process in AD, particularly concerning neuronal damage [48,118,120].
Thrombin is a protease that is also involved in the blood coagulation pathway, but it can also
be generated in the brain in response to injury and inflammation [121–123]. In AD, thrombin
is upregulated in the brain and may contribute to the pathogenesis of the disease [48,50,118].
In one study, the expression of prothrombin mRNA in brain tissues, neuroblastoma cells,
cultured human astrocytes, oligodendrocytes, and microglial cells were detected using the
reverse transcriptase–polymerase chain reaction, and the presence of prothrombin and
thrombin proteins in the brain was confirmed using specific monoclonal and polyclonal
antibodies for both proteins through immunohistochemistry [48]. Furthermore, studies
have demonstrated increased expression of thrombin and its receptors such as protease-
activated receptor 1 (PAR-1) and protease-activated receptor 4 (PAR-4) in the brain in
neurodegenerative diseases [118,124]. Thrombin has also been reported to induce the
NADPH oxidase in microglia in the hippocampus, leading to the death of neuronal cells,
suggesting a potential mechanism by which thrombin contributes to neurodegenerative
processes in the brain [49]. Other reports also show that thrombin can activate microglia,
leading to pro-inflammatory cytokine releases such as TNF-α and IL-1β in BV-2 and
primary human microglia in vitro [125,126].

Thrombin-induced neuroinflammation via microglial activation was found to be me-
diated through the PAR-1 receptor signaling pathway [124]. In the AD brain, thrombin
can also induce vascular inflammation, exacerbating BBB damage [50,51]. Thrombin may
also contribute to Aβ accumulation in the brain, as it can cleave the Aβ precursor pro-
tein and generate Aβ peptides that aggregate and form amyloid plaques in the cultured
hippocampal neurons and human endothelial cells in vitro [52,53]. Additionally, reports
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suggest that thrombin can induce tau hyperphosphorylation and aggregation in murine
hippocampal neurons, resulting in microglial activation, reduction in delayed synapto-
physin, and apoptotic neuronal death [127]. Moreover, along with calpain-1, it can cleave
tau, resulting in a ~17 kDA neurotoxic fragment that can cause impaired synaptic function
and axonal transport, mitochondrial membrane depolarization, and behavioral deficits in
AD brains [128,129].
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Figure 3. The blood-borne proteins interact with various receptors on the microglial cells to activate
downstream signaling and influence various inflammatory and neurodegenerative processes in
Alzheimer’s disease. Figure was created using BioRender (https://www.biorender.com/ (accessed
on 5 April 2023); Agreement number: ST257J0OKO).

4.2. pKr-2

pKr-2, also known as fragment 2, is a small protein fragment that is released dur-
ing the activation of prothrombin [44–47,130–142], which is a precursor protein that is
converted into the active blood-clotting enzyme thrombin [44–47,130–142]. The role of
pKr-2 in the blood is to inhibit the prothrombinase complex activity in conjunction with

https://www.biorender.com/
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Factor Va, thereby preventing further thrombin production [45,139,143]. In addition, pKr-2
inhibits endothelial cell proliferation and angiogenesis, suggesting its potential role in BBB
maintenance [135,136].

We recently reported the increased pKr-2 protein expression in the brain tissues of
patients with AD and 5XFAD AD mouse models compared to those of healthy individuals
using Western blotting and immunofluorescence staining [44–46]. In an in vitro study, the
pKr-2 induced neuroinflammation through microglial activation without directly causing
neuronal toxicity in the co-culture of mesencephalic neurons and microglia [134]. However,
in the hippocampus of the 5XFAD AD mouse model, pKr-2 overexpression was shown
to induce microglial activation, leading to excessive neuroinflammation and subsequent
neuronal death through the activation of TLR4 transcription factors, such as PU.1 and
p-c-Jun [44,45,47,130,133]. We also reported that caffeine and rivaroxaban treatment can
suppress the generation and brain influx of pKr-2, leading to a reduction in neuroinflam-
mation and improvement in cognitive impairment in the 5XFAD AD mouse model [46].
Although further detailed mechanistic studies are required to fully understand the mi-
croglial activation by pKr-2, various studies have demonstrated that controlling pKr-2
overexpression is a potential therapeutic strategy for AD [44–47].

4.3. Fibrinogen, Fibrin

Fibrinogen is a key protein involved in the blood-clotting process [34,42,43,54,144–146].
The formation of fibrin monomers at the site of vascular injury induces the binding of
fibrinogen to the vessel wall and its conversion into fibrin dimers, which form a foam-like
structure in the blood and are important for blood clotting [144,145,147]. Recent studies
have shown that fibrinogen can traverse the BBB and have significant physiological and
pathological effects in the brain [34,42,43,54]. Fibrinogen is associated with neuroinflamma-
tion and changes in brain vasculature in neurodegenerative disorders such as AD [42,43].
These changes can cause damage to brain neurons and synapses, leading to symptoms such
as cognitive impairment [34]. According to the in vivo study by Merlini et al., fibrinogen
can activate microglia in the brain and contribute to the process of removal of synaptic
spines, which is associated with the development and progression of AD in mice [34].
Additionally, fibrinogen can impair the integrity of the brain vasculature and cause BBB
damage, which occurs in the early stages of AD and increases in severity as the disease
progresses [43,146]. Another study suggested that the binding of fibrinogen and Aβ in
the brain may exacerbate the severity of a TgCRND8 AD model in vivo [54–56], as this
association can result in the formation of abnormal blood clots and blockages in the cerebral
vasculature [54].

Similar to fibrinogen, fibrin also plays an important role in the process of blood
clotting [42,144,145,147,148]. Thrombin cleaves fibrinogen to form fibrin monomers, which
polymerize to create the fibrin clot [42,144,145,147,148]. According to a study, conducted
in APP/PS1 transgenic mice, an AD model, an increase in fibrin within blood vessels and
the abnormal accumulation of the extracellular matrix in the brain tissue were found to
induce neurovascular damage and neuroinflammatory responses [148]. The progression of
Aβ deposition in the brain tissue was accompanied by vascular damage and inflammatory
responses [148], which, in turn, accelerated the progression of AD due to the excessive
accumulation of fibrin [148]. Thus, reducing the abnormal accumulation of fibrin in the
extracellular matrix and brain vasculature may mitigate brain damage and slow down
disease progression [148]. Ryu et al. showed that treatment with the 5B8 antibody targeting
the fibrin epitope γ377-395 prevented abnormal fibrin accumulation in a 5XFAD AD animal
model, resulting in decreased neuroinflammation and neuronal damage [42].

4.4. Other Proteins and Factors

In addition to coagulation factors, blood vessels contain a diverse array of proteins
and factors that serve a range of functions beyond their role in hemostasis [83–86,149–155].
These proteins and factors can also infiltrate the brain and have harmful effects [149–155].
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In one study, the blood-borne Aβ protein was found to penetrate the BBB and accumulate in
the microglia, leading to AD pathogenesis [155]. The blood Aβ protein induces neuroinflam-
mation and microglial activation, leading to the formation of brain deposits and neuronal
damage [155]. AD patients have increased levels of albumin and immunoglobulin G (IgG)
in their blood compared to normal individuals, and the passage of these proteins through
the impaired BBB into the brain may play a role in the pathophysiology of AD [149,151,154].
Additionally, the brain tissues of patients with AD patients were shown to have increased
concentration of hemoglobin-derived peptides, which may contribute to neuroinflamma-
tion and neuronal damage [153]. Another study reported increased iron levels in the
hippocampal region of patients with AD using magnetic resonance imaging, which may
be related to the pathophysiological changes in AD [152]. Plasminogen derived from
blood was shown to induce Aβ accumulation in the brain through microglial activation,
further aggravating the neuroinflammatory responses [150]. Specifically, plasminogens
derived from blood could induce Aβ accumulation in the brain through microglial acti-
vation, leading to further promotion of neuroinflammatory responses [150]. Therefore,
further investigation is required to examine additional proteins and factors present in the
blood and to investigate their mechanisms of infiltration into the brain and activation of
microglial cells.

In addition, the overexpression or overactivation of certain brain proteins could dis-
rupt BBB integrity. A study investigated the role of IL-1β in regulating BBB permeability
and found that IL-1β activated microglia, leading to damage and inflammation of vascular
endothelial cells; this, subsequently, affected angiogenesis and increased vascular perme-
ability [156]. In addition, an investigation of BBB destruction and cell death in an ischemic
stroke model revealed that the TNF-α derived from microglia induced neuronal death,
exacerbating BBB destruction [157]. Some studies revealed that blood-derived extracellu-
lar vesicles, such as microvesicles, transported into the brain could influence microglial
activation, and extracellular vesicles generated through microglial activation could in-
duce neuronal damage in the AD brain [158,159]. Moreover, High Mobility Group Box-1
(HMGB1) was identified as one of the key factors that promotes BBB breakdown. HMGB1
increases in the setting of brain injury or inflammation, inducing an inflammatory response
in the endothelial cells of the BBB and increasing BBB permeability [160]. Matrix metallo-
proteinases (MMPs) are protein-degrading enzymes that regulate the extracellular matrix,
but excessive MMP activity can cause brain tissue damage and inflammation [160,161].
Increased activity of MMP-9 was shown to be involved in the breakdown of the BBB [161].
Therefore, further research on the signaling pathways such as MMP-9 and other proteins
in relation to BBB damage may support the development of new therapeutic strategies
for AD.

5. Novel Therapeutic Approach to the Control of Blood-Borne Proteins in AD

Anticoagulants are used as preventive or therapeutic measures against blood-borne
proteins, thereby impeding thrombosis or embolism formation [113,162]. These drugs
inhibit blood clotting through various mechanisms [113,162]. Several studies have reported
the potential role of anticoagulants that can inhibit blood-borne proteins in the treatment of
AD (Figure 4).

Heparin is an anticoagulant that is primarily administered as an intravenous or sub-
cutaneous injection to treat thrombotic disorders such as acute myocardial infarction and
pulmonary embolism [163–170]. Several studies have reported that heparin could increase
gamma-secretase activity and decrease beta-secretase 1 (BACE1) activity in primary cortical
neurons from Tg2576 mice, leading to the inhibition of Aβ production [164]; it could also
regulate Apolipoprotein E (ApoE), a protein that binds to Aβ, leading to reduced Aβ

generation, neurotoxicity, and brain inflammation [165,167,168]. Furthermore, heparin
has been reported to inhibit microglial activation and inflammation in the brain, which
could be beneficial for treating AD [165,166]. Enoxaparin, a low molecular weight heparin,
was shown to inhibit Aβ deposition and improve cognitive function in the Appel/PS1dE9
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mouse model of AD, suggesting its potential role in the treatment of AD [169]. In addition,
enoxaparin was found to prevent the formation of ApoE4-Aβ complexes by binding to
them [170]. In another study, dalteparin, a low molecular weight heparin, was found to
reduce oxidative stress and inhibit the inflammatory response in the hippocampus of the
streptozotocin-induced model, leading to an improvement in cognitive impairment [171].
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Dabigatran is an oral anticoagulant that acts by directly inhibiting thrombin [172–176].
The administration of dabigatran for 12 months in the TgCRND8 AD mouse model led to
the reduced accumulation of Aβ aggregates and a decrease in neuronal damage and inflam-
matory response [175]. In another study using a PS19 mouse model with tau aggregates, the
expression pattern of some proteins related to mitochondria was altered after a one-week
treatment with dabigatran [174]. In addition, in primary rat cortical neurons, dabigatran
treatment resulted in a decrease in thrombin-induced pro-inflammatory cytokine and
chemokine expression, as well as Aβ peptide generation, and a decrease in the level of
phosphorylated tau protein [173]. Furthermore, a study suggested that dabigatran may
prevent the progression of AD by inhibiting inflammation, protecting the brain vasculature
by inhibiting thrombin activity [172]. These results indicated that dabigatran may reduce
neuroinflammation and AD pathology related to thrombin activity.

Rivaroxaban is an anticoagulant that directly inhibits factor Xa associated with throm-
bin production [177–179]. An earlier report suggested that a high dose of rivaroxaban
(60 mg/kg) can attenuate neuroinflammation, BBB dysfunction, memory deficits, and Aβ

deposition through PAR-1/PAR-2 inhibition in the AD CAA mice model [180]. Recently,
we also reported that oral administration of rivaroxaban to six-month-old 5XFAD mice for
three months inhibited the production of pKr-2 in the hippocampus, resulting in reduced
neuroinflammation, neurotoxicity, and improved object cognitive behavior [46].

The available evidence suggests that anticoagulants have sufficient potential to sup-
press neuroinflammation mediated via microglial activation by inhibiting blood-borne
proteins in the brain [46,163–170,172–176]. Although nonsteroidal anti-inflammatory drugs,
such as cyclooxygenase 1 and 2 inhibitors, can be used to control neuroinflammation
in the AD brain [181,182], several studies have suggested that these anticoagulants can
ameliorate neuroinflammation through microglial activation inhibition, thereby impeding
blood-derived proteins and Aβ generation and aggregation [165–170,173,175].

https://www.biorender.com/
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6. Conclusions

As AD is a multifactorial disorder, with various mechanisms contributing to its pro-
gression and development, it cannot be concluded that the disease progression occurs
solely due to specific mechanisms of blood-borne proteins. Moreover, further research is
required for an in-depth characterization of the neuroinflammatory mechanisms associated
with microglial activation induced by blood-borne protein entry through the impaired
BBB. Altogether, these studies suggest that abnormal blood coagulation and the proteins
involved in the neuroinflammatory process play a central role in the development and
progression of AD. Additionally, the deterrent effects against blood-borne proteins may be
a potential therapeutic strategy in the early stage of AD.
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